Márton Rakovics


Fixing paper assignments

  1. Please select all papers that belong to the same person.
  2. Indicate below which author they should be assigned to.
Provide a valid ORCID iD here. This will be used to match future papers to this author.
Provide the name of the school or the university where the author has received or will receive their highest degree (e.g., Ph.D. institution for researchers, or current affiliation for students). This will be used to form the new author page ID, if needed.

TODO: "submit" and "cancel" buttons here


2024

pdf bib
TPPMI - a Temporal Positive Pointwise Mutual Information Embedding of Words
Paul Schmitt | Zsófia Rakovics | Márton Rakovics | Gábor Recski
Proceedings of the 4th Workshop on Computational Linguistics for the Political and Social Sciences: Long and short papers

We present Temporal Positive Pointwise Mutual Information (TPPMI) embeddings as a robust and data-efficient alternative for modeling temporal semantic change. Based on the assumption that the semantics of the most frequent words in a corpus are relatively stable over time, our model represents words as vectors of their PPMI similarities with a predefined set of such context words. We evaluate our method on the temporal word analogy benchmark of Yao et al. (2018) and compare it to the TWEC model (Di Carlo et al., 2019), demonstrating the competitiveness of the approach. While the performance of TPPMI stays below that of the state-of-the-art TWEC model, it offers a higher degree of interpretability and is applicable in scenarios where only a limited amount of data is available.