Martin Pereira


Fixing paper assignments

  1. Please select all papers that do not belong to this person.
  2. Indicate below which author they should be assigned to.
Provide a valid ORCID iD here. This will be used to match future papers to this author.
Provide the name of the school or the university where the author has received or will receive their highest degree (e.g., Ph.D. institution for researchers, or current affiliation for students). This will be used to form the new author page ID, if needed.

TODO: "submit" and "cancel" buttons here


2025

pdf bib
Old but Gold: LLM-Based Features and Shallow Learning Methods for Fine-Grained Controversy Analysis in YouTube Comments
Davide Bassi | Erik Bran Marino | Renata Vieira | Martin Pereira
Proceedings of the 12th Argument mining Workshop

Online discussions can either bridge differences through constructive dialogue or amplify divisions through destructive interactions. paper proposes a computational approach to analyze dialogical relation patterns in YouTube comments, offering a fine-grained framework for controversy detection, enabling also analysis of individual contributions. experiments demonstrate that shallow learning methods, when equipped with these theoretically-grounded features, consistently outperform more complex language models in characterizing discourse quality at both comment-pair and conversation-chain levels.studies confirm that divisive rhetorical techniques serve as strong predictors of destructive communication patterns. work advances understanding of how communicative choices shape online discourse, moving beyond engagement metrics toward nuanced examination of constructive versus destructive dialogue patterns.