Martin Mihelich


Fixing paper assignments

  1. Please select all papers that belong to the same person.
  2. Indicate below which author they should be assigned to.
Provide a valid ORCID iD here. This will be used to match future papers to this author.
Provide the name of the school or the university where the author has received or will receive their highest degree (e.g., Ph.D. institution for researchers, or current affiliation for students). This will be used to form the new author page ID, if needed.

TODO: "submit" and "cancel" buttons here


2022

pdf bib
A Simple Log-based Loss Function for Ordinal Text Classification
François Castagnos | Martin Mihelich | Charles Dognin
Proceedings of the 29th International Conference on Computational Linguistics

The cross-entropy loss function is widely used and generally considered the default loss function for text classification. When it comes to ordinal text classification where there is an ordinal relationship between labels, the cross-entropy is not optimal as it does not incorporate the ordinal character into its feedback. In this paper, we propose a new simple loss function called ordinal log-loss (OLL). We show that this loss function outperforms state-of-the-art previously introduced losses on four benchmark text classification datasets.