Martin Kerscher


Fixing paper assignments

  1. Please select all papers that belong to the same person.
  2. Indicate below which author they should be assigned to.
Provide a valid ORCID iD here. This will be used to match future papers to this author.
Provide the name of the school or the university where the author has received or will receive their highest degree (e.g., Ph.D. institution for researchers, or current affiliation for students). This will be used to form the new author page ID, if needed.

TODO: "submit" and "cancel" buttons here


2020

pdf bib
Vec2Sent: Probing Sentence Embeddings with Natural Language Generation
Martin Kerscher | Steffen Eger
Proceedings of the 28th International Conference on Computational Linguistics

We introspect black-box sentence embeddings by conditionally generating from them with the objective to retrieve the underlying discrete sentence. We perceive of this as a new unsupervised probing task and show that it correlates well with downstream task performance. We also illustrate how the language generated from different encoders differs. We apply our approach to generate sentence analogies from sentence embeddings.