Martin Foltin


Fixing paper assignments

  1. Please select all papers that do not belong to this person.
  2. Indicate below which author they should be assigned to.
Provide a valid ORCID iD here. This will be used to match future papers to this author.
Provide the name of the school or the university where the author has received or will receive their highest degree (e.g., Ph.D. institution for researchers, or current affiliation for students). This will be used to form the new author page ID, if needed.

TODO: "submit" and "cancel" buttons here


2025

pdf bib
SubLIME: Subset Selection via Rank Correlation Prediction for Data-Efficient LLM Evaluation
Gayathri Saranathan | Cong Xu | Mahammad Parwez Alam | Tarun Kumar | Martin Foltin | Soon Yee Wong | Suparna Bhattacharya
Proceedings of the 63rd Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)

The rapid expansion of Large Language Models (LLMs) and natural language processing datasets has made exhaustive benchmark evaluations computationally prohibitive. Inspired by high-stakes competitions like the International Mathematical Olympiad-where a few well-chosen problems suffice to differentiate top performers—we present SubLIME, which reduces evaluation costs by 80% to 99% while preserving ranking fidelity. It trains a Rank Correlation Prediction (RCP) model that combines limited performance data from only 5-20 anchor LLMs with dataset intrinsic metrics - Difficulty, Quality, and Distributional Dispersion-to predict how closely a candidate subset reflects full-benchmark rankings. Guided by these predictions, SubLIME selects a “winning” subset (1-20% of full set data) for evaluating new LLMs, preserving global rankings significant better than other data-efficient methods across ten diverse benchmarks.