Martha Maria Papadopoulou


Fixing paper assignments

  1. Please select all papers that belong to the same person.
  2. Indicate below which author they should be assigned to.
Provide a valid ORCID iD here. This will be used to match future papers to this author.
Provide the name of the school or the university where the author has received or will receive their highest degree (e.g., Ph.D. institution for researchers, or current affiliation for students). This will be used to form the new author page ID, if needed.

TODO: "submit" and "cancel" buttons here


2021

pdf bib
Benchmarking ASR Systems Based on Post-Editing Effort and Error Analysis
Martha Maria Papadopoulou | Anna Zaretskaya | Ruslan Mitkov
Proceedings of the Translation and Interpreting Technology Online Conference

This paper offers a comparative evaluation of four commercial ASR systems which are evaluated according to the post-editing effort required to reach “publishable” quality and according to the number of errors they produce. For the error annotation task, an original error typology for transcription errors is proposed. This study also seeks to examine whether there is a difference in the performance of these systems between native and non-native English speakers. The experimental results suggest that among the four systems, Trint obtains the best scores. It is also observed that most systems perform noticeably better with native speakers and that all systems are most prone to fluency errors.