Marta Punsola


Fixing paper assignments

  1. Please select all papers that belong to the same person.
  2. Indicate below which author they should be assigned to.
Provide a valid ORCID iD here. This will be used to match future papers to this author.
Provide the name of the school or the university where the author has received or will receive their highest degree (e.g., Ph.D. institution for researchers, or current affiliation for students). This will be used to form the new author page ID, if needed.

TODO: "submit" and "cancel" buttons here


2024

pdf bib
EsCoLA: Spanish Corpus of Linguistic Acceptability
Núria Bel | Marta Punsola | Valle Ruiz-Fernández
Proceedings of the 2024 Joint International Conference on Computational Linguistics, Language Resources and Evaluation (LREC-COLING 2024)

Acceptability is one of the General Language Understanding Evaluation Benchmark (GLUE) probing tasks proposed to assess the linguistic capabilities acquired by a deep-learning transformer-based language model (LM). In this paper, we introduce the Spanish Corpus of Linguistic Acceptability EsCoLA. EsCoLA has been developed following the example of other linguistic acceptability data sets for English, Italian, Norwegian or Russian, with the aim of having a complete GLUE benchmark for Spanish. EsCoLA consists of 11,174 sentences and their acceptability judgements as found in well-known Spanish reference grammars. Additionally, all sentences have been annotated with the class of linguistic phenomenon the sentence is an example of, also following previous practices. We also provide as task baselines the results of fine-tuning four different language models with this data set and the results of a human annotation experiment. Results are also analyzed and commented to guide future research. EsCoLA is released under a CC-BY 4.0 license and freely available at https://doi.org/10.34810/data1138.