This is an internal, incomplete preview of a proposed change to the ACL Anthology.
For efficiency reasons, we don't generate MODS or Endnote formats, and the preview may be incomplete in other ways, or contain mistakes.
Do not treat this content as an official publication.
MarkusNußbaum-Thom
Also published as:
Markus Nussbaum-thom
Fixing paper assignments
Please select all papers that belong to the same person.
Indicate below which author they should be assigned to.
On-device automatic speech recognition systems face several challenges compared to server-based systems. They have to meet stricter constraints in terms of speed, disk size and memory while maintaining the same accuracy. Often they have to serve several ap- plications with different distributions at once, such as communicating with a virtual assistant and speech-to-text. The simplest solution to serve multiple applications is to build application-specific (language) models, but this leads to an increase in memory. Therefore, we explore different data- and architecture-driven language modeling approaches to build a single application-agnostic model. We propose two novel feed-forward architectures that find an optimal trade off between different on-device constraints. In comparison to the application-specific solution, one of our novel approaches reduces the disk size by half, while maintaining speed and accuracy of the original model.
In this paper, German and English large vocabulary continuous speech recognition (LVCSR) systems developed by the RWTH Aachen University for the IWSLT-2013 evaluation campaign are presented. Good improvements are obtained with state-of-the-art monolingual and multilingual bottleneck features. In addition, an open vocabulary approach using morphemic sub-lexical units is investigated along with the language model adaptation for the German LVCSR. For both the languages, competitive WERs are achieved using system combination.
In this paper, the automatic speech recognition (ASR) and statistical machine translation (SMT) systems of RWTH Aachen University developed for the evaluation campaign of the International Workshop on Spoken Language Translation (IWSLT) 2012 are presented. We participated in the ASR (English), MT (English-French, Arabic-English, Chinese-English, German-English) and SLT (English-French) tracks. For the MT track both hierarchical and phrase-based SMT decoders are applied. A number of different techniques are evaluated in the MT and SLT tracks, including domain adaptation via data selection, translation model interpolation, phrase training for hierarchical and phrase-based systems, additional reordering model, word class language model, various Arabic and Chinese segmentation methods, postprocessing of speech recognition output with an SMT system, and system combination. By application of these methods we can show considerable improvements over the respective baseline systems.
In spoken language translation a machine translation system takes speech as input and translates it into another language. A standard machine translation system is trained on written language data and expects written language as input. In this paper we propose an approach to close the gap between the output of automatic speech recognition and the input of machine translation by training the translation system on automatically transcribed speech. In our experiments we show improvements of up to 0.9 BLEU points on the IWSLT 2012 English-to-French speech translation task.
This paper describes the speech-to-text systems used to provide automatic transcriptions used in the Quaero 2010 evaluation of Machine Translation from speech. Quaero (www.quaero.org) is a large research and industrial innovation program focusing on technologies for automatic analysis and classification of multimedia and multilingual documents. The ASR transcript is the result of a Rover combination of systems from three teams ( KIT, RWTH, LIMSI+VR) for the French and German languages. The casesensitive word error rates (WER) of the combined systems were respectively 20.8% and 18.1% on the 2010 evaluation data, relative WER reductions of 14.6% and 17.4% respectively over the best component system.