Marko Rajnović


Fixing paper assignments

  1. Please select all papers that belong to the same person.
  2. Indicate below which author they should be assigned to.
Provide a valid ORCID iD here. This will be used to match future papers to this author.
Provide the name of the school or the university where the author has received or will receive their highest degree (e.g., Ph.D. institution for researchers, or current affiliation for students). This will be used to form the new author page ID, if needed.

TODO: "submit" and "cancel" buttons here


2023

pdf bib
C-XNLI: Croatian Extension of XNLI Dataset
Leo Obadić | Andrej Jertec | Marko Rajnović | Branimir Dropuljić
Findings of the Association for Computational Linguistics: ACL 2023

Comprehensive multilingual evaluations have been encouraged by emerging cross-lingual benchmarks and constrained by existing parallel datasets. To partially mitigate this limitation, we extended the Cross-lingual Natural Language Inference (XNLI) corpus with Croatian. The development and test sets were translated by a professional translator, and we show that Croatian is consistent with other XNLI dubs. The train set is translated using Facebook’s 1.2B parameter m2m_100 model. We thoroughly analyze the Croatian train set and compare its quality with the existing machine-translated German set. The comparison is based on 2000 manually scored sentences per language using a variant of the Direct Assessment (DA) score commonly used at the Conference on Machine Translation (WMT). Our findings reveal that a less-resourced language like Croatian is still lacking in translation quality of longer sentences compared to German. However, both sets have a substantial amount of poor quality translations, which should be considered in translation-based training or evaluation setups.