This is an internal, incomplete preview of a proposed change to the ACL Anthology.
For efficiency reasons, we don't generate MODS or Endnote formats, and the preview may be incomplete in other ways, or contain mistakes.
Do not treat this content as an official publication.
MarioMezzanzanica
Fixing paper assignments
Please select all papers that do not belong to this person.
Indicate below which author they should be assigned to.
Enriching sentences with knowledge from qualitative sources benefits various NLP tasks and enhances the use of labeled data in model training. This is crucial for Financial Sentiment Analysis (FSA), where texts are often brief and contain implied information. We introduce RE-FIN (Retrieval-based Enrichment for FINancial data), an automated system designed to retrieve information from a knowledge base to enrich financial sentences, making them more knowledge-dense and explicit. RE-FIN generates propositions from the knowledge base and employs Retrieval-Augmented Generation (RAG) to augment the original text with relevant information. A large language model (LLM) rewrites the original sentence, incorporating this data. Since the LLM does not create new content, the risk of hallucinations is significantly reduced. The LLM generates multiple new sentences using different relevant information from the knowledge base; we developed an algorithm to select one that best preserves the meaning of the original sentence while avoiding excessive syntactic similarity. Results show that enhanced sentences present lower perplexity than the original ones and improve performances on FSA.
We present ITALIC, a large-scale benchmark dataset of 10,000 multiple-choice questions designed to evaluate the natural language understanding of the Italian language and culture. ITALIC spans 12 domains, exploiting public tests to score domain experts in real-world scenarios. We detail our data collection process, stratification techniques, and selection strategies. ITALIC provides a comprehensive assessment suite that captures commonsense reasoning and linguistic proficiency in a morphologically rich language. We establish baseline performances using 17 state-of-the-art LLMs, revealing current limitations in Italian language understanding and highlighting significant linguistic complexity and cultural specificity challenges. ITALIC serves as a benchmark for evaluating existing models and as a roadmap for future research, encouraging the development of more sophisticated and culturally aware natural language systems.
The recent growth of black-box machine-learning methods in data analysis has increased the demand for explanation methods and tools to understand their behaviour and assist human-ML model cooperation. In this paper, we demonstrate ContrXT, a novel approach that uses natural language explanations to help users to comprehend how a back-box model works. ContrXT provides time contrastive (t-contrast) explanations by computing the differences in the classification logic of two different trained models and then reasoning on their symbolic representations through Binary Decision Diagrams. ContrXT is publicly available at ContrXT.ai as a python pip package.