Marina Balenciaga


Fixing paper assignments

  1. Please select all papers that belong to the same person.
  2. Indicate below which author they should be assigned to.
Provide a valid ORCID iD here. This will be used to match future papers to this author.
Provide the name of the school or the university where the author has received or will receive their highest degree (e.g., Ph.D. institution for researchers, or current affiliation for students). This will be used to form the new author page ID, if needed.

TODO: "submit" and "cancel" buttons here


2016

pdf bib
Impact of Automatic Segmentation on the Quality, Productivity and Self-reported Post-editing Effort of Intralingual Subtitles
Aitor Álvarez | Marina Balenciaga | Arantza del Pozo | Haritz Arzelus | Anna Matamala | Carlos-D. Martínez-Hinarejos
Proceedings of the Tenth International Conference on Language Resources and Evaluation (LREC'16)

This paper describes the evaluation methodology followed to measure the impact of using a machine learning algorithm to automatically segment intralingual subtitles. The segmentation quality, productivity and self-reported post-editing effort achieved with such approach are shown to improve those obtained by the technique based in counting characters, mainly employed for automatic subtitle segmentation currently. The corpus used to train and test the proposed automated segmentation method is also described and shared with the community, in order to foster further research in this area.