Marie Ingeborg Kroka


Fixing paper assignments

  1. Please select all papers that belong to the same person.
  2. Indicate below which author they should be assigned to.
Provide a valid ORCID iD here. This will be used to match future papers to this author.
Provide the name of the school or the university where the author has received or will receive their highest degree (e.g., Ph.D. institution for researchers, or current affiliation for students). This will be used to form the new author page ID, if needed.

TODO: "submit" and "cancel" buttons here


2025

pdf bib
Benchmarking Abstractive Summarisation: A Dataset of Human-authored Summaries of Norwegian News Articles
Samia Touileb | Vladislav Mikhailov | Marie Ingeborg Kroka | Lilja Øvrelid | Erik Velldal
Proceedings of the Joint 25th Nordic Conference on Computational Linguistics and 11th Baltic Conference on Human Language Technologies (NoDaLiDa/Baltic-HLT 2025)

We introduce a dataset of high-quality human-authored summaries of news articles in Norwegian. The dataset is intended for benchmarking of the abstractive summarisation capabilities of generative language models. Each document in the dataset is provided with three different candidate gold-standard summaries written by native Norwegian speakers and all summaries are provided in both of the written variants of Norwegian – Bokmål and Nynorsk. The paper describes details on the data creation effort as well as an evaluation of existing open LLMs for Norwegian on the dataset. We also provide insights from a manual human evaluation, comparing human-authored to model generated summaries. Our results indicate that the dataset provides a challenging LLM benchmark for Norwegian summarisation capabilities.