This is an internal, incomplete preview of a proposed change to the ACL Anthology.
For efficiency reasons, we don't generate MODS or Endnote formats, and the preview may be incomplete in other ways, or contain mistakes.
Do not treat this content as an official publication.
MarianaShimabukuro
Fixing paper assignments
Please select all papers that belong to the same person.
Indicate below which author they should be assigned to.
We present LangEye, a mobile application for contextual vocabulary learning that combines learner-curated content with generative NLP. Learners use their smartphone camera to capture real-world objects and create personalized “memories” enriched with definitions, example sentences, and pronunciations generated via object recognition, large language models, and machine translation.LangEye features a three-phase review system — progressing from picture recognition to sentence completion and free recall. In a one-week exploratory study with 20 French (L2) learners, the learner-curated group reported higher engagement and motivation than those using pre-curated materials. Participants valued the app’s personalization and contextual relevance. This study highlights the potential of integrating generative NLP with situated, learner-driven interaction. We identify design opportunities for adaptive review difficulty, improved content generation, and better support for language-specific features. LangEye points toward scalable, personalized vocabulary learning grounded in real-world contexts.
LangLearn is an open-source framework designed to facilitate autonomous learning of low-resource languages (LRL). By combining a language-agnostic approach with AI-enhanced flashcards, LangLearn empowers users to generate custom flashcards for their vocabulary, while offering structured learning through both pre-curated and self-curated decks. The framework integrates six key components: the word definition, corresponding Hanji characters, romanization with numeric tones, audio pronunciation, a sample sentence, as well as a contextual AI-generated image. LangLearn currently supports English and Taiwanese Hokkien (a variety of Southern Min), with plans to extend support for other dialects. Our preliminary study demonstrates that LangLearn positively empowers users to engage with LRLs using their vocabulary preferences, with a comprehensive user study currently underway. LangLearn’s modular structure enables future expansion, including ASR-based pronunciation practice. The code is available at https://github.com/HokkienTranslation/HokkienTranslation.
This paper presents Card-it, a web-based application for learning Italian verb conjugation. Card-it integrates a large-scale finite-state morphological~(FSM) analyzer and a flashcard application as a user-friendly way for learners to utilize the analyzer. While Card-it can be used by individual learners, to support classroom adoption, we implemented simple classroom management functionalities such as sharing flashcards to a class and tracking students’ progression. We evaluated Card-it with teachers of Italian. Card-it was reported as engaging and supportive, especially by featuring two different quiz types combined with a verb form look-up feature. Teachers were optimistic about the potential of Card-it as a classroom supplementary tool for learners of Italian as L2. Future work includes sample sentences and a complete learners evaluation.