Mariam Babar Khan


Fixing paper assignments

  1. Please select all papers that belong to the same person.
  2. Indicate below which author they should be assigned to.
Provide a valid ORCID iD here. This will be used to match future papers to this author.
Provide the name of the school or the university where the author has received or will receive their highest degree (e.g., Ph.D. institution for researchers, or current affiliation for students). This will be used to form the new author page ID, if needed.

TODO: "submit" and "cancel" buttons here


2025

pdf bib
NUST Nova at RIRAG 2025: A Hybrid Framework for Regulatory Information Retrieval and Question Answering
Mariam Babar Khan | Huma Ameer | Seemab Latif | Mehwish Fatima
Proceedings of the 1st Regulatory NLP Workshop (RegNLP 2025)

NUST Nova participates in RIRAG Shared Task, addressing two critical challenges: Task 1 involves retrieving relevant subsections from regulatory documents based on user queries, while Task 2 focuses on generating concise, contextually accurate answers using the retrieved information. We propose a Hybrid Retrieval Framework that combines graph-based retrieval, vector-based methods, and keyword matching BM25 to enhance relevance and precision in regulatory QA. Using score-based fusion and iterative refinement, the framework retrieves the top 10 relevant passages, which are then used by an LLM to generate accurate, context-aware answers. After empirical evaluation, we also conduct an error analysis to identify our framework’s limitations.