Maria Volina


Fixing paper assignments

  1. Please select all papers that belong to the same person.
  2. Indicate below which author they should be assigned to.
Provide a valid ORCID iD here. This will be used to match future papers to this author.
Provide the name of the school or the university where the author has received or will receive their highest degree (e.g., Ph.D. institution for researchers, or current affiliation for students). This will be used to form the new author page ID, if needed.

TODO: "submit" and "cancel" buttons here


2025

pdf bib
RusConText Benchmark: A Russian Language Evaluation Benchmark for Understanding Context
Andrey Chirkin | Svetlana Kuznetsova | Maria Volina | Anna Dengina
Proceedings of the 63rd Annual Meeting of the Association for Computational Linguistics (Volume 4: Student Research Workshop)

This paper represents an implementation of an approach rather similar to that of (Zhu et al., 2024), adapted for the Russian-language data. We introduce the RusConText Benchmark for evaluating short-context understanding in Russian, comprising four distinct yet interrelated tasks: coreference resolution, discourse understanding, idiom interpretation and ellipsis resolution. Each task targets a specific aspect of linguistic processing, challenging a large language model to recover omitted information, resolve referential dependencies, interpret idioms and discourse. The RusConText Benchmark is an additional resource beyond standard benchmarks, designed to assess model performance from a specific perspective. In addition, we present the results of scoring 4 models on our benchmark.