Maria Giannoudaki


Fixing paper assignments

  1. Please select all papers that belong to the same person.
  2. Indicate below which author they should be assigned to.
Provide a valid ORCID iD here. This will be used to match future papers to this author.
Provide the name of the school or the university where the author has received or will receive their highest degree (e.g., Ph.D. institution for researchers, or current affiliation for students). This will be used to form the new author page ID, if needed.

TODO: "submit" and "cancel" buttons here


2013

pdf bib
Semantic Similarity Computation for Abstract and Concrete Nouns Using Network-based Distributional Semantic Models
Elias Iosif | Alexandros Potamianos | Maria Giannoudaki | Kalliopi Zervanou
Proceedings of the 10th International Conference on Computational Semantics (IWCS 2013) – Short Papers

2012

pdf bib
Associative and Semantic Features Extracted From Web-Harvested Corpora
Elias Iosif | Maria Giannoudaki | Eric Fosler-Lussier | Alexandros Potamianos
Proceedings of the Eighth International Conference on Language Resources and Evaluation (LREC'12)

We address the problem of automatic classification of associative and semantic relations between words, and particularly those that hold between nouns. Lexical relations such as synonymy, hypernymy/hyponymy, constitute the fundamental types of semantic relations. Associative relations are harder to define, since they include a long list of diverse relations, e.g., """"Cause-Effect"""", """"Instrument-Agency"""". Motivated by findings from the literature of psycholinguistics and corpus linguistics, we propose features that take advantage of general linguistic properties. For evaluation we merged three datasets assembled and validated by cognitive scientists. A proposed priming coefficient that measures the degree of asymmetry in the order of appearance of the words in text achieves the best classification results, followed by context-based similarity metrics. The web-based features achieve classification accuracy that exceeds 85%.