This is an internal, incomplete preview of a proposed change to the ACL Anthology.
For efficiency reasons, we don't generate MODS or Endnote formats, and the preview may be incomplete in other ways, or contain mistakes.
Do not treat this content as an official publication.
MargheritaFanton
Also published as:
Nicola Fanton
Fixing paper assignments
Please select all papers that do not belong to this person.
Indicate below which author they should be assigned to.
We examine audience-specific how-to guides on wikiHow, in English, diachronically by comparing predictions from fine-tuned language models and human judgments. Using both early and revised versions, we quantitatively and qualitatively study how gender-specific features are identified over time. While language model performance remains relatively stable in terms of macro F1-scores, we observe an increased reliance on stereotypical tokens. Notably, both models and human raters tend to overpredict women as an audience, raising questions about bias in the evaluation of educational systems and resources.
Instructional texts for different audience groups can help to address specific needs, but at the same time run the risk of perpetrating biases. In this paper, we extend previous findings on disparate social norms and subtle stereotypes in wikiHow in two directions: We explore the use of fine-tuned language models to determine how audience-specific instructional texts can be distinguished and we transfer the methodology to another language, Italian, to identify cross-linguistic patterns. We find that language models mostly rely on group terms, gender markings, and attributes reinforcing stereotypes.
Instructional texts for specific target groups should ideally take into account the prior knowledge and needs of the readers in order to guide them efficiently to their desired goals. However, targeting specific groups also carries the risk of reflecting disparate social norms and subtle stereotypes. In this paper, we investigate the extent to which how-to guides from one particular platform, wikiHow, differ in practice depending on the intended audience. We conduct two case studies in which we examine qualitative features of texts written for specific audiences. In a generalization study, we investigate which differences can also be systematically demonstrated using computational methods. The results of our studies show that guides from wikiHow, like other text genres, are subject to subtle biases. We aim to raise awareness of these inequalities as a first step to addressing them in future work.
In this work, we present an extensive study on the use of pre-trained language models for the task of automatic Counter Narrative (CN) generation to fight online hate speech in English. We first present a comparative study to determine whether there is a particular Language Model (or class of LMs) and a particular decoding mechanism that are the most appropriate to generate CNs. Findings show that autoregressive models combined with stochastic decodings are the most promising. We then investigate how an LM performs in generating a CN with regard to an unseen target of hate. We find out that a key element for successful ‘out of target’ experiments is not an overall similarity with the training data but the presence of a specific subset of training data, i. e. a target that shares some commonalities with the test target that can be defined a-priori. We finally introduce the idea of a pipeline based on the addition of an automatic post-editing step to refine generated CNs.
Undermining the impact of hateful content with informed and non-aggressive responses, called counter narratives, has emerged as a possible solution for having healthier online communities. Thus, some NLP studies have started addressing the task of counter narrative generation. Although such studies have made an effort to build hate speech / counter narrative (HS/CN) datasets for neural generation, they fall short in reaching either high-quality and/or high-quantity. In this paper, we propose a novel human-in-the-loop data collection methodology in which a generative language model is refined iteratively by using its own data from the previous loops to generate new training samples that experts review and/or post-edit. Our experiments comprised several loops including diverse dynamic variations. Results show that the methodology is scalable and facilitates diverse, novel, and cost-effective data collection. To our knowledge, the resulting dataset is the only expert-based multi-target HS/CN dataset available to the community.