Marco Carini


Fixing paper assignments

  1. Please select all papers that belong to the same person.
  2. Indicate below which author they should be assigned to.
Provide a valid ORCID iD here. This will be used to match future papers to this author.
Provide the name of the school or the university where the author has received or will receive their highest degree (e.g., Ph.D. institution for researchers, or current affiliation for students). This will be used to form the new author page ID, if needed.

TODO: "submit" and "cancel" buttons here


2025

pdf bib
TASER: Translation Assessment via Systematic Evaluation and Reasoning
Monishwaran Maheswaran | Marco Carini | Christian Federmann | Tony Diaz
Proceedings of the Tenth Conference on Machine Translation

We introduce TASER (Translation Assessment via Systematic Evaluation and Reasoning), a metric that uses Large Reasoning Models (LRMs) for automated translation quality assessment. TASER harnesses the explicit reasoning capabilities of LRMs to conduct systematic, step-by-step evaluation of translation quality. We evaluate TASER on the WMT24 Metrics Shared Task across both reference-based and reference-free scenarios, demonstrating state-of-the-art performance. In system-level evaluation, TASER achieves the highest soft pairwise accuracy in both reference-based and reference-free settings, outperforming all existing metrics. At the segment level, TASER maintains competitive performance with our reference-free variant ranking as the top-performing metric among all reference-free approaches. Our experiments reveal that structured prompting templates yield superior results with LRMs compared to the open-ended approaches that proved optimal for traditional LLMs. We evaluate o3, a large reasoning model from OpenAI, with varying reasoning efforts, providing insights into the relationship between reasoning depth and evaluation quality. The explicit reasoning process in LRMs offers interpretability and visibility, addressing a key limitation of existing automated metrics. Our results demonstrate that Large Reasoning Models show a measurable advancement in translation quality assessment, combining improved accuracy with transparent evaluation across diverse language pairs.