Marcelo Sandoval-Castaneda


Fixing paper assignments

  1. Please select all papers that belong to the same person.
  2. Indicate below which author they should be assigned to.
Provide a valid ORCID iD here. This will be used to match future papers to this author.
Provide the name of the school or the university where the author has received or will receive their highest degree (e.g., Ph.D. institution for researchers, or current affiliation for students). This will be used to form the new author page ID, if needed.

TODO: "submit" and "cancel" buttons here


2023

pdf bib
TTIC’s Submission to WMT-SLT 23
Marcelo Sandoval-Castaneda | Yanhong Li | Bowen Shi | Diane Brentari | Karen Livescu | Gregory Shakhnarovich
Proceedings of the Eighth Conference on Machine Translation

In this paper, we describe TTIC’s submission to WMT 2023 Sign Language Translation task on the Swiss-German Sign Language (DSGS) to German track. Our approach explores the advantages of using large-scale self-supervised pre-training in the task of sign language translation, over more traditional approaches that rely heavily on supervision, along with costly labels such as gloss annotations. The proposed model consists of a VideoSwin transformer for image encoding, and a T5 model adapted to receive VideoSwin features as input instead of text. In WMT-SLT 22’s development set, this system achieves 2.03 BLEU score, a 59% increase over the previous best reported performance. In the official test set, our primary submission achieves 1.1 BLEU score and 17.0 chrF score.