Maochen Guan


Fixing paper assignments

  1. Please select all papers that belong to the same person.
  2. Indicate below which author they should be assigned to.
Provide a valid ORCID iD here. This will be used to match future papers to this author.
Provide the name of the school or the university where the author has received or will receive their highest degree (e.g., Ph.D. institution for researchers, or current affiliation for students). This will be used to form the new author page ID, if needed.

TODO: "submit" and "cancel" buttons here


2016

pdf bib
Word Substitution in Short Answer Extraction: A WordNet-based Approach
Qingqing Cai | James Gung | Maochen Guan | Gerald Kurlandski | Adam Pease
Proceedings of the 8th Global WordNet Conference (GWC)

We describe the implementation of a short answer extraction system. It consists of a simple sentence selection front-end and a two phase approach to answer extraction from a sentence. In the first phase sentence classification is performed with a classifier trained with the passive aggressive algorithm utilizing the UIUC dataset and taxonomy and a feature set including word vectors. This phase outperforms the current best published results on that dataset. In the second phase, a sieve algorithm consisting of a series of increasingly general extraction rules is applied, using WordNet to find word types aligned with the UIUC classifications determined in the first phase. Some very preliminary performance metrics are presented.