This is an internal, incomplete preview of a proposed change to the ACL Anthology.
For efficiency reasons, we don't generate MODS or Endnote formats, and the preview may be incomplete in other ways, or contain mistakes.
Do not treat this content as an official publication.
ManonMacary
Fixing paper assignments
Please select all papers that belong to the same person.
Indicate below which author they should be assigned to.
Nous présentons un nouveau corpus, nommé AlloSat, composé de conversations en français extraites de centre d’appels, annotées de façon continue en frustration et satisfaction. Dans le contexte des centres d’appels, une conversation vise généralement à résoudre la demande de l’appelant. Ce corpus a été mis en place afin de développer de nouveaux systèmes capables de modéliser l’aspect continu de l’information sémantique et para-linguistique au niveau conversationnel. Nous nous concentrons sur le niveau para-linguistique, plus précisément sur l’expression des émotions. À notre connaissance, la plupart des corpus émotionnels contiennent des annotations en catégories discrètes ou dans des dimensions continues telles que l’activation ou la valence. Nous supposons que ces dimensions ne sont pas suffisamment liées à notre contexte. Pour résoudre ce problème, nous proposons un corpus permettant une connaissance en temps réel de l’axe frustration/satisfaction. AlloSat regroupe 303 conversations pour un total d’environ 37 heures d’audio, toutes enregistrées dans des environnements réels, collectées par Allo-Media (une société spécialisée dans l’analyse automatique d’appels). Les premières expériences de classification montrent que l’évolution de l’axe frustration/satisfaction peut être prédite automatiquement par conversation.
We present a new corpus, named AlloSat, composed of real-life call center conversations in French that is continuously annotated in frustration and satisfaction. This corpus has been set up to develop new systems able to model the continuous aspect of semantic and paralinguistic information at the conversation level. The present work focuses on the paralinguistic level, more precisely on the expression of emotions. In the call center industry, the conversation usually aims at solving the caller’s request. As far as we know, most emotional databases contain static annotations in discrete categories or in dimensions such as activation or valence. We hypothesize that these dimensions are not task-related enough. Moreover, static annotations do not enable to explore the temporal evolution of emotional states. To solve this issue, we propose a corpus with a rich annotation scheme enabling a real-time investigation of the axis frustration / satisfaction. AlloSat regroups 303 conversations with a total of approximately 37 hours of audio, all recorded in real-life environments collected by Allo-Media (an intelligent call tracking company). First regression experiments, with audio features, show that the evolution of frustration / satisfaction axis can be retrieved automatically at the conversation level.