Manli Shu


Fixing paper assignments

  1. Please select all papers that belong to the same person.
  2. Indicate below which author they should be assigned to.
Provide a valid ORCID iD here. This will be used to match future papers to this author.
Provide the name of the school or the university where the author has received or will receive their highest degree (e.g., Ph.D. institution for researchers, or current affiliation for students). This will be used to form the new author page ID, if needed.

TODO: "submit" and "cancel" buttons here


2025

pdf bib
LATTE: Learning to Think with Vision Specialists
Zixian Ma | Jianguo Zhang | Zhiwei Liu | Jieyu Zhang | Juntao Tan | Manli Shu | Juan Carlos Niebles | Shelby Heinecke | Huan Wang | Caiming Xiong | Ranjay Krishna | Silvio Savarese
Proceedings of the 2025 Conference on Empirical Methods in Natural Language Processing

While open-source vision-language models perform well on simple question-answering, they still struggle with complex questions that require both perceptual and reasoning capabilities. We propose LATTE, a family of vision-language models that have LeArned to Think wiTh vision spEcialists. By offloading perception to state-of-the-art vision models, our approach enables vision-language models to focus solely on reasoning over high-quality perceptual information. To train LATTE, we synthesize and filter a large dataset of 293K multi-modal reasoning traces over perceptual outputs of vision specialists. LATTE trained on this data achieves significant 4-5% gains over baselines across 6 benchmarks covering both perception and reasoning abilities. Ablation studies reveal that the effectiveness of multi-modal reasoning traces depends on the data sources, formats, and quality of thoughts.