Manjunath K E


Fixing paper assignments

  1. Please select all papers that belong to the same person.
  2. Indicate below which author they should be assigned to.
Provide a valid ORCID iD here. This will be used to match future papers to this author.
Provide the name of the school or the university where the author has received or will receive their highest degree (e.g., Ph.D. institution for researchers, or current affiliation for students). This will be used to form the new author page ID, if needed.

TODO: "submit" and "cancel" buttons here


2025

pdf bib
SpeechLLMs for Large-scale Contextualized Zero-shot Slot Filling
Kadri Hacioglu | Manjunath K E | Andreas Stolcke
Proceedings of the 2025 Conference on Empirical Methods in Natural Language Processing: Industry Track

Slot filling is a crucial subtask in spoken language understanding (SLU), traditionally implemented as a cascade of speech recognition followed by one or more natural language understanding (NLU) components. The recent advent of speech-based large language models (speechLLMs), which integrate speech and textual foundation models, has opened new avenues for achieving speech understanding tasks in a more unified, generative, and instruction-following manner while promising data and compute efficiency with zero-shot abilities, generalizing to unseen slot labels. We address the slot-filling task by creating an empirical upper bound for the task, identifying performance, robustness, and generalization gaps, and proposing improvements to the training data, architecture, and training strategies to narrow the gap with the upper bound result. We show that each of these measures improve performance substantially, while highlighting practical challenges and providing empirical guidance and insights for harnessing these emerging models.