Manikandarajan Ramanathan


Fixing paper assignments

  1. Please select all papers that belong to the same person.
  2. Indicate below which author they should be assigned to.
Provide a valid ORCID iD here. This will be used to match future papers to this author.
Provide the name of the school or the university where the author has received or will receive their highest degree (e.g., Ph.D. institution for researchers, or current affiliation for students). This will be used to form the new author page ID, if needed.

TODO: "submit" and "cancel" buttons here


2025

pdf bib
LLM-Based Dialogue Labeling for Multiturn Adaptive RAG
Zhiyu Chen | Biancen Xie | Sidarth Srinivasan | Manikandarajan Ramanathan | Rajashekar Maragoud | Qun Liu
Proceedings of the 2025 Conference on Empirical Methods in Natural Language Processing: Industry Track

Customer service often relies on human agents, which, while effective, can be costly and slower to scale. Recent advancements in intelligent chatbots, particularly Retrieval-Augmented Generation (RAG) models, have significantly enhanced efficiency by integrating large language models with external knowledge retrieval. However, developing a multi-turn RAG-based chatbot for real-world customer service presents additional complexities, requiring components like adaptive retrieval and query reformulation. These components typically require substantial annotated data, which is often scarce. To overcome this limitation, we propose methods to automatically generate labels for these components using real customer-agent dialogue data. Specifically, we introduce two labeling strategies for adaptive retrieval: an intent-guided strategy and an explanation-based strategy, along with two query reformulation strategies: natural language query reformulation and keyword-based reformulation. Our experiments reveal that the explanation-based strategy yields the best results for adaptive retrieval, while the keyword-based reformulation improves document retrieval quality.Our findings offer valuable insights for practitioners working on multi-turn RAG systems.