Malek Rhouma


Fixing paper assignments

  1. Please select all papers that belong to the same person.
  2. Indicate below which author they should be assigned to.
Provide a valid ORCID iD here. This will be used to match future papers to this author.
Provide the name of the school or the university where the author has received or will receive their highest degree (e.g., Ph.D. institution for researchers, or current affiliation for students). This will be used to form the new author page ID, if needed.

TODO: "submit" and "cancel" buttons here


2022

pdf bib
iCompass at Arabic Hate Speech 2022: Detect Hate Speech Using QRNN and Transformers
Mohamed Aziz Bennessir | Malek Rhouma | Hatem Haddad | Chayma Fourati
Proceedinsg of the 5th Workshop on Open-Source Arabic Corpora and Processing Tools with Shared Tasks on Qur'an QA and Fine-Grained Hate Speech Detection

This paper provides a detailed overview of the system we submitted as part of the OSACT2022 Shared Tasks on Fine-Grained Hate Speech Detection on Arabic Twitter, its outcome, and limitations. Our submission is accomplished with a hard parameter sharing Multi-Task Model that consisted of a shared layer containing state-of-the-art contextualized text representation models such as MarBERT, AraBERT, ArBERT and task specific layers that were fine-tuned with Quasi-recurrent neural networks (QRNN) for each down-stream subtask. The results show that MARBERT fine-tuned with QRNN outperforms all of the previously mentioned models.