Makoto Fujiwara


Fixing paper assignments

  1. Please select all papers that belong to the same person.
  2. Indicate below which author they should be assigned to.
Provide a valid ORCID iD here. This will be used to match future papers to this author.
Provide the name of the school or the university where the author has received or will receive their highest degree (e.g., Ph.D. institution for researchers, or current affiliation for students). This will be used to form the new author page ID, if needed.

TODO: "submit" and "cancel" buttons here


2025

pdf bib
Natural Language Translation of Formal Proofs through Informalization of Proof Steps and Recursive Summarization along Proof Structure
Seiji Hattori | Takuya Matsuzaki | Makoto Fujiwara
Proceedings of the 18th International Natural Language Generation Conference

This paper proposes a natural language translation method for machine-verifiable formal proofs that leverages the informalization (verbalization of formal language proof steps) and summarization capabilities of LLMs. For evaluation, it was applied to formal proof data created in accordance with natural language proofs taken from an undergraduate-level textbook, and the quality of the generated natural language proofs was analyzed in comparison with the original natural language proofs. Furthermore, we will demonstrate that this method can output highly readable and accurate natural language proofs by applying it to existing formal proof library of the Lean proof assistant.