Mahshid Dehghani


Fixing paper assignments

  1. Please select all papers that belong to the same person.
  2. Indicate below which author they should be assigned to.
Provide a valid ORCID iD here. This will be used to match future papers to this author.
Provide the name of the school or the university where the author has received or will receive their highest degree (e.g., Ph.D. institution for researchers, or current affiliation for students). This will be used to form the new author page ID, if needed.

TODO: "submit" and "cancel" buttons here


2025

pdf bib
Emo3D: Metric and Benchmarking Dataset for 3D Facial Expression Generation from Emotion Description
Mahshid Dehghani | Amirahmad Shafiee | Ali Shafiei | Neda Fallah | Farahmand Alizadeh | Mohammad Mehdi Gholinejad | Hamid Behroozi | Jafar Habibi | Ehsaneddin Asgari
Findings of the Association for Computational Linguistics: NAACL 2025

3D facial emotion modeling has important applications in areas such as animation design, virtual reality, and emotional human-computer interaction (HCI). However, existing models are constrained by limited emotion classes and insufficient datasets. To address this, we introduce Emo3D, an extensive “Text-Image-Expression dataset” that spans a wide spectrum of human emotions, each paired with images and 3D blendshapes. Leveraging Large Language Models (LLMs), we generate a diverse array of textual descriptions, enabling the capture of a broad range of emotional expressions. Using this unique dataset, we perform a comprehensive evaluation of fine-tuned language-based models and vision-language models, such as Contrastive Language-Image Pretraining (CLIP), for 3D facial expression synthesis. To better assess conveyed emotions, we introduce Emo3D metric, a new evaluation metric that aligns more closely with human perception than traditional Mean Squared Error (MSE). Unlike MSE, which focuses on numerical differences, Emo3D captures emotional nuances in visual-text alignment and semantic richness. Emo3D dataset and metric hold great potential for advancing applications in animation and virtual reality.

2024

pdf bib
AIMA at SemEval-2024 Task 3: Simple Yet Powerful Emotion Cause Pair Analysis
Alireza Ghahramani Kure | Mahshid Dehghani | Mohammad Mahdi Abootorabi | Nona Ghazizadeh | Seyed Arshan Dalili | Ehsaneddin Asgari
Proceedings of the 18th International Workshop on Semantic Evaluation (SemEval-2024)

The SemEval-2024 Task 3 presents two subtasks focusing on emotion-cause pair extraction within conversational contexts. Subtask 1 revolves around the extraction of textual emotion-cause pairs, where causes are defined and annotated as textual spans within the conversation. Conversely, Subtask 2 extends the analysis to encompass multimodal cues, including language, audio, and vision, acknowledging instances where causes may not be exclusively represented in the textual data. Our proposed model for emotion-cause analysis is meticulously structured into three core segments: (i) embedding extraction, (ii) cause-pair extraction & emotion classification, and (iii) cause extraction using QA after finding pairs. Leveraging state-of-the-art techniques and fine-tuning on task-specific datasets, our model effectively unravels the intricate web of conversational dynamics and extracts subtle cues signifying causality in emotional expressions. Our team, AIMA, demonstrated strong performance in the SemEval-2024 Task 3 competition. We ranked as the 10th in subtask 1 and the 6th in subtask 2 out of 23 teams.

pdf bib
AIMA at SemEval-2024 Task 10: History-Based Emotion Recognition in Hindi-English Code-Mixed Conversations
Mohammad Mahdi Abootorabi | Nona Ghazizadeh | Seyed Arshan Dalili | Alireza Ghahramani Kure | Mahshid Dehghani | Ehsaneddin Asgari
Proceedings of the 18th International Workshop on Semantic Evaluation (SemEval-2024)

In this study, we introduce a solution to the SemEval 2024 Task 10 on subtask 1, dedicated to Emotion Recognition in Conversation (ERC) in code-mixed Hindi-English conversations. ERC in code-mixed conversations presents unique challenges, as existing models are typically trained on monolingual datasets and may not perform well on code-mixed data. To address this, we propose a series of models that incorporate both the previous and future context of the current utterance, as well as the sequential information of the conversation. To facilitate the processing of code-mixed data, we developed a Hinglish-to-English translation pipeline to translate the code-mixed conversations into English. We designed four different base models, each utilizing powerful pre-trained encoders to extract features from the input but with varying architectures. By ensembling all of these models, we developed a final model that outperforms all other baselines.