This is an internal, incomplete preview of a proposed change to the ACL Anthology.
For efficiency reasons, we don't generate MODS or Endnote formats, and the preview may be incomplete in other ways, or contain mistakes.
Do not treat this content as an official publication.
MahshidDehghani
Fixing paper assignments
Please select all papers that belong to the same person.
Indicate below which author they should be assigned to.
3D facial emotion modeling has important applications in areas such as animation design, virtual reality, and emotional human-computer interaction (HCI). However, existing models are constrained by limited emotion classes and insufficient datasets. To address this, we introduce Emo3D, an extensive “Text-Image-Expression dataset” that spans a wide spectrum of human emotions, each paired with images and 3D blendshapes. Leveraging Large Language Models (LLMs), we generate a diverse array of textual descriptions, enabling the capture of a broad range of emotional expressions. Using this unique dataset, we perform a comprehensive evaluation of fine-tuned language-based models and vision-language models, such as Contrastive Language-Image Pretraining (CLIP), for 3D facial expression synthesis. To better assess conveyed emotions, we introduce Emo3D metric, a new evaluation metric that aligns more closely with human perception than traditional Mean Squared Error (MSE). Unlike MSE, which focuses on numerical differences, Emo3D captures emotional nuances in visual-text alignment and semantic richness. Emo3D dataset and metric hold great potential for advancing applications in animation and virtual reality.
The SemEval-2024 Task 3 presents two subtasks focusing on emotion-cause pair extraction within conversational contexts. Subtask 1 revolves around the extraction of textual emotion-cause pairs, where causes are defined and annotated as textual spans within the conversation. Conversely, Subtask 2 extends the analysis to encompass multimodal cues, including language, audio, and vision, acknowledging instances where causes may not be exclusively represented in the textual data. Our proposed model for emotion-cause analysis is meticulously structured into three core segments: (i) embedding extraction, (ii) cause-pair extraction & emotion classification, and (iii) cause extraction using QA after finding pairs. Leveraging state-of-the-art techniques and fine-tuning on task-specific datasets, our model effectively unravels the intricate web of conversational dynamics and extracts subtle cues signifying causality in emotional expressions. Our team, AIMA, demonstrated strong performance in the SemEval-2024 Task 3 competition. We ranked as the 10th in subtask 1 and the 6th in subtask 2 out of 23 teams.
In this study, we introduce a solution to the SemEval 2024 Task 10 on subtask 1, dedicated to Emotion Recognition in Conversation (ERC) in code-mixed Hindi-English conversations. ERC in code-mixed conversations presents unique challenges, as existing models are typically trained on monolingual datasets and may not perform well on code-mixed data. To address this, we propose a series of models that incorporate both the previous and future context of the current utterance, as well as the sequential information of the conversation. To facilitate the processing of code-mixed data, we developed a Hinglish-to-English translation pipeline to translate the code-mixed conversations into English. We designed four different base models, each utilizing powerful pre-trained encoders to extract features from the input but with varying architectures. By ensembling all of these models, we developed a final model that outperforms all other baselines.