Maeve Hutchinson


Fixing paper assignments

  1. Please select all papers that do not belong to this person.
  2. Indicate below which author they should be assigned to.
Provide a valid ORCID iD here. This will be used to match future papers to this author.
Provide the name of the school or the university where the author has received or will receive their highest degree (e.g., Ph.D. institution for researchers, or current affiliation for students). This will be used to form the new author page ID, if needed.

TODO: "submit" and "cancel" buttons here


2025

pdf bib
Chart Question Answering from Real-World Analytical Narratives
Maeve Hutchinson | Radu Jianu | Aidan Slingsby | Jo Wood | Pranava Madhyastha
Proceedings of the 63rd Annual Meeting of the Association for Computational Linguistics (Volume 4: Student Research Workshop)

We present a new dataset for chart question answering (CQA) constructed from visualization notebooks. The dataset features real-world, multi-view charts paired with natural language questions grounded in analytical narratives. Unlike prior benchmarks, our data reflects ecologically valid reasoning workflows. Benchmarking state-of-the-art multimodal large language models reveals a significant performance gap, with GPT-4.1 achieving an accuracy of 69.3%, underscoring the challenges posed by this more authentic CQA setting.