Maeghal Jain


Fixing paper assignments

  1. Please select all papers that do not belong to this person.
  2. Indicate below which author they should be assigned to.
Provide a valid ORCID iD here. This will be used to match future papers to this author.
Provide the name of the school or the university where the author has received or will receive their highest degree (e.g., Ph.D. institution for researchers, or current affiliation for students). This will be used to form the new author page ID, if needed.

TODO: "submit" and "cancel" buttons here


2025

pdf bib
Dissecting Persona-Driven Reasoning in Language Models via Activation Patching
Ansh Poonia | Maeghal Jain
Findings of the Association for Computational Linguistics: EMNLP 2025

Large language models (LLMs) exhibit remarkable versatility in adopting diverse personas. In this study, we examine how assigning a persona influences a model’s reasoning on an objective task. Using activation patching, we take a first step toward understanding how key components of the model encode persona-specific information. Our findings reveal that the early Multi-Layer Perceptron (MLP) layers attend not only to the syntactic structure of the input but also process its semantic content. These layers transform persona tokens into richer representations, which are then used by the middle Multi-Head Attention (MHA) layers to shape the model’s output. Additionally, we identify specific attention heads that disproportionately attend to racial and color-based identities.