Luwei Xiao


Fixing paper assignments

  1. Please select all papers that do not belong to this person.
  2. Indicate below which author they should be assigned to.
Provide a valid ORCID iD here. This will be used to match future papers to this author.
Provide the name of the school or the university where the author has received or will receive their highest degree (e.g., Ph.D. institution for researchers, or current affiliation for students). This will be used to form the new author page ID, if needed.

TODO: "submit" and "cancel" buttons here


2024

pdf bib
Vanessa: Visual Connotation and Aesthetic Attributes Understanding Network for Multimodal Aspect-based Sentiment Analysis
Luwei Xiao | Rui Mao | Xulang Zhang | Liang He | Erik Cambria
Findings of the Association for Computational Linguistics: EMNLP 2024

Prevailing research concentrates on superficial features or descriptions of images, revealing a significant gap in the systematic exploration of their connotative and aesthetic attributes. Furthermore, the use of cross-modal relation detection modules to eliminate noise from comprehensive image representations leads to the omission of subtle contextual information. In this paper, we present a Visual Connotation and Aesthetic Attributes Understanding Network (Vanessa) for Multimodal Aspect-based Sentiment Analysis. Concretely, Vanessa incorporates a Multi-Aesthetic Attributes Aggregation (MA3) module that models intra- and inter-dependencies among bi-modal representations as well as emotion-laden aesthetic attributes. Moreover, we devise a self-supervised contrastive learning framework to explore the pairwise relevance between images and text via the Gaussian distribution of their CLIP scores. By dynamically clustering and merging multi-modal tokens, Vanessa effectively captures both implicit and explicit sentimental cues. Extensive experiments on widely adopted two benchmarks verify Vanessa’s effectiveness.