Luo Xianlong


Fixing paper assignments

  1. Please select all papers that belong to the same person.
  2. Indicate below which author they should be assigned to.
Provide a valid ORCID iD here. This will be used to match future papers to this author.
Provide the name of the school or the university where the author has received or will receive their highest degree (e.g., Ph.D. institution for researchers, or current affiliation for students). This will be used to form the new author page ID, if needed.

TODO: "submit" and "cancel" buttons here


2023

pdf bib
Tagging-Assisted Generation Model with Encoder and Decoder Supervision for Aspect Sentiment Triplet Extraction
Luo Xianlong | Meng Yang | Yihao Wang
Proceedings of the 2023 Conference on Empirical Methods in Natural Language Processing

ASTE (Aspect Sentiment Triplet Extraction) has gained increasing attention. Recent advancements in the ASTE task have been primarily driven by Natural Language Generation-based (NLG) approaches. However, most NLG methods overlook the supervision of the encoder-decoder hidden representations and fail to fully utilize the semantic information provided by the labels to enhance supervision. These limitations can hinder the extraction of implicit aspects and opinions. To address these challenges, we propose a tagging-assisted generation model with encoder and decoder supervision (TAGS), which enhances the supervision of the encoder and decoder through multiple-perspective tagging assistance and label semantic representations. Specifically, TAGS enhances the generation task by integrating an additional sequence tagging task, which improves the encoder’s capability to distinguish the words of triplets. Moreover, it utilizes sequence tagging probabilities to guide the decoder, improving the generated content’s quality. Furthermore, TAGS employs a self-decoding process for labels to acquire the semantic representations of the labels and aligns the decoder’s hidden states with these semantic representations, thereby achieving enhanced semantic supervision for the decoder’s hidden states. Extensive experiments on various public benchmarks demonstrate that TAGS achieves state-of-the-art performance.