Lulwah AlKulaib


Fixing paper assignments

  1. Please select all papers that belong to the same person.
  2. Indicate below which author they should be assigned to.
Provide a valid ORCID iD here. This will be used to match future papers to this author.
Provide the name of the school or the university where the author has received or will receive their highest degree (e.g., Ph.D. institution for researchers, or current affiliation for students). This will be used to form the new author page ID, if needed.

TODO: "submit" and "cancel" buttons here


2024

pdf bib
Synthetic Arabic Medical Dialogues Using Advanced Multi-Agent LLM Techniques
Mariam ALMutairi | Lulwah AlKulaib | Melike Aktas | Sara Alsalamah | Chang-Tien Lu
Proceedings of the Second Arabic Natural Language Processing Conference

The increasing use of artificial intelligence in healthcare requires robust datasets for training and validation, particularly in the domain of medical conversations. However, the creation and accessibility of such datasets in Arabic face significant challenges, especially due to the sensitivity and privacy concerns that are associated with medical conversations. These conversations are rarely recorded or preserved, making the availability of comprehensive Arabic medical dialogue datasets scarce. This limitation slows down not only the development of effective natural language processing models but also restricts the opportunity for open comparison of algorithms and their outcomes. Recent advancements in large language models (LLMs) like ChatGPT, GPT-4, Gemini-pro, and Claude-3 show promising capabilities in generating synthetic data. To address this gap, we introduce a novel Multi-Agent LLM approach capable of generating synthetic Arabic medical dialogues from patient notes, regardless of the original language. This development presents a significant step towards overcoming the barriers in dataset availability, enhancing the potential for broader research and application in AI-driven medical dialogue systems.