Łukasz Kopociński


Fixing paper assignments

  1. Please select all papers that belong to the same person.
  2. Indicate below which author they should be assigned to.
Provide a valid ORCID iD here. This will be used to match future papers to this author.
Provide the name of the school or the university where the author has received or will receive their highest degree (e.g., Ph.D. institution for researchers, or current affiliation for students). This will be used to form the new author page ID, if needed.

TODO: "submit" and "cancel" buttons here


2020

pdf bib
Brand-Product Relation Extraction Using Heterogeneous Vector Space Representations
Arkadiusz Janz | Łukasz Kopociński | Maciej Piasecki | Agnieszka Pluwak
Proceedings of the Twelfth Language Resources and Evaluation Conference

Relation Extraction is a fundamental NLP task. In this paper we investigate the impact of underlying text representation on the performance of neural classification models in the task of Brand-Product relation extraction. We also present the methodology of preparing annotated textual corpora for this task and we provide valuable insight into the properties of Brand-Product relations existing in textual corpora. The problem is approached from a practical angle of applications Relation Extraction in facilitating commercial Internet monitoring.