Lukas Conrads


Fixing paper assignments

  1. Please select all papers that belong to the same person.
  2. Indicate below which author they should be assigned to.
Provide a valid ORCID iD here. This will be used to match future papers to this author.
Provide the name of the school or the university where the author has received or will receive their highest degree (e.g., Ph.D. institution for researchers, or current affiliation for students). This will be used to form the new author page ID, if needed.

TODO: "submit" and "cancel" buttons here


2023

pdf bib
Hidden Schema Networks
Ramses Sanchez | Lukas Conrads | Pascal Welke | Kostadin Cvejoski | Cesar Ojeda Marin
Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)

Large, pretrained language models infer powerful representations that encode rich semantic and syntactic content, albeit implicitly. In this work we introduce a novel neural language model that enforces, via inductive biases, explicit relational structures which allow for compositionality onto the output representations of pretrained language models. Specifically, the model encodes sentences into sequences of symbols (composed representations), which correspond to the nodes visited by biased random walkers on a global latent graph, and infers the posterior distribution of the latter. We first demonstrate that the model is able to uncover ground-truth graphs from artificially generated datasets of random token sequences. Next, we leverage pretrained BERT and GPT-2 language models as encoder and decoder, respectively, to infer networks of symbols (schemata) from natural language datasets. Our experiments show that (i) the inferred symbols can be interpreted as encoding different aspects of language, as e.g. topics or sentiments, and that (ii) GPT-2-like models can effectively be conditioned on symbolic representations. Finally, we explore training autoregressive, random walk “reasoning” models on schema networks inferred from commonsense knowledge databases, and using the sampled paths to enhance the performance of pretrained language models on commonsense If-Then reasoning tasks.