Luis Enders


Fixing paper assignments

  1. Please select all papers that belong to the same person.
  2. Indicate below which author they should be assigned to.
Provide a valid ORCID iD here. This will be used to match future papers to this author.
Provide the name of the school or the university where the author has received or will receive their highest degree (e.g., Ph.D. institution for researchers, or current affiliation for students). This will be used to form the new author page ID, if needed.

TODO: "submit" and "cancel" buttons here


2020

pdf bib
Annotating Patient Information Needs in Online Diabetes Forums
Julia Romberg | Jan Dyczmons | Sandra Olivia Borgmann | Jana Sommer | Markus Vomhof | Cecilia Brunoni | Ismael Bruck-Ramisch | Luis Enders | Andrea Icks | Stefan Conrad
Proceedings of the Fifth Social Media Mining for Health Applications Workshop & Shared Task

Identifying patient information needs is an important issue for health care services and implementation of patient-centered care. A relevant number of people with diabetes mellitus experience a need for information during the course of the disease. Health-related online forums are a promising option for researching relevant information needs closely related to everyday life. In this paper, we present a novel data corpus comprising 4,664 contributions from an online diabetes forum in German language. Two annotation tasks were implemented. First, the contributions were categorised according to whether they contain a diabetes-specific information need or not, which might either be a non diabetes-specific information need or no information need at all, resulting in an agreement of 0.89 (Krippendorff’s α). Moreover, the textual content of diabetes-specific information needs was segmented and labeled using a well-founded definition of health-related information needs, which achieved a promising agreement of 0.82 (Krippendorff’s αu). We further report a baseline for two sub-tasks of the information extraction system planned for the long term: contribution categorization and segment classification.