Luheerathan Thevakumar


Fixing paper assignments

  1. Please select all papers that belong to the same person.
  2. Indicate below which author they should be assigned to.
Provide a valid ORCID iD here. This will be used to match future papers to this author.
Provide the name of the school or the university where the author has received or will receive their highest degree (e.g., Ph.D. institution for researchers, or current affiliation for students). This will be used to form the new author page ID, if needed.

TODO: "submit" and "cancel" buttons here


2025

pdf bib
RATHAN@DravidianLangTech 2025: Annaparavai - Separate the Authentic Human Reviews from AI-generated one
Jubeerathan Thevakumar | Luheerathan Thevakumar
Proceedings of the Fifth Workshop on Speech, Vision, and Language Technologies for Dravidian Languages

Detecting AI-generated reviews is crucial for maintaining the authenticity of online feedback in low-resource languages like Tamil and Malayalam. We propose a transfer learning-based approach using embeddings from XLM-RoBERTa, IndicBERT, mT5, and Sentence-BERT, validated with five-fold cross-validation via XGBoost. These embeddings are used to train deep neural networks (DNNs), refined through a weighted ensemble model. Our method achieves 90% F1-score for Malayalam and 73% for Tamil, demonstrating the effectiveness of transfer learning and ensembling for review detection. The source code is publicly available to support further research and improve online review systems in multilingual settings.