Lucia Pagani


Fixing paper assignments

  1. Please select all papers that belong to the same person.
  2. Indicate below which author they should be assigned to.
Provide a valid ORCID iD here. This will be used to match future papers to this author.
Provide the name of the school or the university where the author has received or will receive their highest degree (e.g., Ph.D. institution for researchers, or current affiliation for students). This will be used to form the new author page ID, if needed.

TODO: "submit" and "cancel" buttons here


2021

pdf bib
EnSidNet: Enhanced Hybrid Siamese-Deep Network for grouping clinical trials into drug-development pathways
Lucia Pagani
Proceedings of the 2021 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies

Siamese Neural Networks have been widely used to perform similarity classification in multi-class settings. Their architecture can be used to group the clinical trials belonging to the same drug-development pathway along the several clinical trial phases. Here we present an approach for the unmet need of drug-development pathway reconstruction, based on an Enhanced hybrid Siamese-Deep Neural Network (EnSidNet). The proposed model demonstrates significant improvement above baselines in a 1-shot evaluation setting and in a classical similarity setting. EnSidNet can be an essential tool in a semi-supervised learning environment: by selecting clinical trials highly likely to belong to the same drug-development pathway it is possible to speed up the labelling process of human experts, allowing the check of a consistent volume of data, further used in the model’s training dataset.
Search
Co-authors
    Venues
    Fix data