Lucas Albarede


Fixing paper assignments

  1. Please select all papers that belong to the same person.
  2. Indicate below which author they should be assigned to.
Provide a valid ORCID iD here. This will be used to match future papers to this author.
Provide the name of the school or the university where the author has received or will receive their highest degree (e.g., Ph.D. institution for researchers, or current affiliation for students). This will be used to form the new author page ID, if needed.

TODO: "submit" and "cancel" buttons here


2023

pdf bib
Entity Enhanced Attention Graph-Based Passages Retrieval
Lucas Albarede | Lorraine Goeuriot | Philippe Mulhem | Claude Le Pape-Gardeux | Sylvain Marie | Trinidad Chardin-Segui
Actes de CORIA-TALN 2023. Actes de la 18e Conférence en Recherche d'Information et Applications (CORIA)

Passage retrieval is crucial in specialized domains where documents are long and complex, such as patents, legal documents, scientific reports, etc. We explore in this paper the integration of Entities and passages in Heterogeneous Attention Graph Models dedicated to passage retrieval. We use the two passage retrieval architectures based on re-ranking proposed in [1]. We experiment our proposal on the TREC CAR Y3 Passage Retrieval Task. The results obtained show an improvement over state-of-the-art techniques and proves the effectiveness of the approach. Our experiments also show the importance of using adequate parameters for such approach.