Luca Aiello


Fixing paper assignments

  1. Please select all papers that do not belong to this person.
  2. Indicate below which author they should be assigned to.
Provide a valid ORCID iD here. This will be used to match future papers to this author.
Provide the name of the school or the university where the author has received or will receive their highest degree (e.g., Ph.D. institution for researchers, or current affiliation for students). This will be used to form the new author page ID, if needed.

TODO: "submit" and "cancel" buttons here


2024

pdf bib
The Parrot Dilemma: Human-Labeled vs. LLM-augmented Data in Classification Tasks
Anders Giovanni Møller | Arianna Pera | Jacob Dalsgaard | Luca Aiello
Proceedings of the 18th Conference of the European Chapter of the Association for Computational Linguistics (Volume 2: Short Papers)

In the realm of Computational Social Science (CSS), practitioners often navigate complex, low-resource domains and face the costly and time-intensive challenges of acquiring and annotating data. We aim to establish a set of guidelines to address such challenges, comparing the use of human-labeled data with synthetically generated data from GPT-4 and Llama-2 in ten distinct CSS classification tasks of varying complexity. Additionally, we examine the impact of training data sizes on performance. Our findings reveal that models trained on human-labeled data consistently exhibit superior or comparable performance compared to their synthetically augmented counterparts. Nevertheless, synthetic augmentation proves beneficial, particularly in improving performance on rare classes within multi-class tasks. Furthermore, we leverage GPT-4 and Llama-2 for zero-shot classification and find that, while they generally display strong performance, they often fall short when compared to specialized classifiers trained on moderately sized training sets.