Louis Hyman


Fixing paper assignments

  1. Please select all papers that belong to the same person.
  2. Indicate below which author they should be assigned to.
Provide a valid ORCID iD here. This will be used to match future papers to this author.
Provide the name of the school or the university where the author has received or will receive their highest degree (e.g., Ph.D. institution for researchers, or current affiliation for students). This will be used to form the new author page ID, if needed.

TODO: "submit" and "cancel" buttons here


2025

pdf bib
Bootstrapping AI: Interdisciplinary Approaches to Assessing OCR Quality in English-Language Historical Documents
Samuel Backer | Louis Hyman
Proceedings of the 5th International Conference on Natural Language Processing for Digital Humanities

New LLM-based OCR and post-OCR correction methods promise to transform computational historical research, yet their efficacy remains contested. We compare multiple correction approaches, including methods for “bootstrapping” fine-tuning with LLM-generated data, and measure their effect on downstream tasks. Our results suggest that standard OCR metrics often underestimate performance gains for historical research, underscoring the need for discipline-driven evaluations that can better reflect the needs of computational humanists.