Liu Meiling

Also published as: 美玲


Fixing paper assignments

  1. Please select all papers that belong to the same person.
  2. Indicate below which author they should be assigned to.
Provide a valid ORCID iD here. This will be used to match future papers to this author.
Provide the name of the school or the university where the author has received or will receive their highest degree (e.g., Ph.D. institution for researchers, or current affiliation for students). This will be used to form the new author page ID, if needed.

TODO: "submit" and "cancel" buttons here


2022

pdf bib
基于实体信息增强及多粒度融合的多文档摘要(Multi-Document Summarization Based on Entity Information Enhancement and Multi-Granularity Fusion)
Jiarui Tang (唐嘉蕊) | Liu Meiling (刘美玲) | Tiejun Zhao (赵铁军) | Jiyun Zhou (周继云)
Proceedings of the 21st Chinese National Conference on Computational Linguistics

“神经网络模型的快速发展使得多文档摘要可以获得人类可读的流畅的摘要,对大规模的数据进行预训练可以更好的从自然语言文本中捕捉更丰富的语义信息,并更好的作用于下游任务。目前很多的多文档摘要的工作也应用了预训练模型(如BERT)并取得了一定的效果,但是这些预训练模型不能更好的从文本中捕获事实性知识,没有考虑到多文档文本的结构化的实体-关系信息,本文提出了基于实体信息增强和多粒度融合的多文档摘要模型MGNIE,将实体关系信息融入预训练模型ERNIE中,增强知识事实以获得多层语义信息,解决摘要生成的事实一致性问题。进而从多种粒度进行多文档层次结构的融合建模,以词信息、实体信息以及句子信息捕捉长文本信息摘要生成所需的关键信息点。本文设计的模型,在国际标准评测数据集MultiNews上对比强基线模型效果和竞争力获得较大提升。”