This is an internal, incomplete preview of a proposed change to the ACL Anthology.
For efficiency reasons, we don't generate MODS or Endnote formats, and the preview may be incomplete in other ways, or contain mistakes.
Do not treat this content as an official publication.
LishuangLi
Also published as:
丽双 李,
LiShuang Li
Fixing paper assignments
Please select all papers that belong to the same person.
Indicate below which author they should be assigned to.
Zero-shot event-relational reasoning is an important task in natural language processing, and existing methods jointly learn a variety of event-relational prefixes and inference-form prefixes to achieve such tasks. However, training prefixes consumes large computational resources and lacks interpretability. Additionally, learning various relational and inferential knowledge inefficiently exploits the connections between tasks. Therefore, we first propose a method for Reasoning-Oriented Locating and Editing (ROLE), which locates and edits the key modules of the language model for reasoning about event relations, enhancing interpretability and also resource-efficiently optimizing the reasoning ability. Subsequently, we propose a method for Analogy-Based Locating and Editing (ABLE), which efficiently exploits the similarities and differences between tasks to optimize the zero-shot reasoning capability. Experimental results show that ROLE improves interpretability and reasoning performance with reduced computational cost. ABLE achieves SOTA results in zero-shot reasoning.
In the Multimodal Sentiment Analysis task, most existing approaches focus on extracting modality-consistent information from raw unimodal data and integrating it into multimodal representations for sentiment classification. However, these methods often assume that all modalities contribute equally to model performance, prioritizing the extraction and enhancement of consistent information, while overlooking the adverse effects of noise caused by modality inconsistency. In contrast to these approaches, this paper introduces a novel approach namely text-guided Hierarchical Noise Eliminator (t-HNE). This model consists of a two-stage denoising phase and a feature recovery phase. Firstly, textual information is injected into both visual and acoustic modalities using an attention mechanism, aiming to reduce intra-modality noise in the visual and acoustic representations. Secondly, it further mitigates inter-modality noise by maximizing the mutual information between textual representations and the respective visual and acoustic representations. Finally, to address the potential loss of modality-invariant information during denoising, the fused multimodal representation is refined through contrastive learning with each unimodal representation except the textual. Extensive experiments conducted on the CMU-MOSI and CMU-MOSEI datasets demonstrate the efficacy of our approach.
In Natural Language Processing(NLP), Event Temporal Relation Extraction (ETRE) is to recognize the temporal relations of two events. Prior studies have noted the importance of language models for ETRE. However, the restricted pre-trained knowledge of Small Language Models(SLMs) limits their capability to handle minority class relations in imbalanced classification datasets. For Large Language Models(LLMs), researchers adopt manually designed prompts or instructions, which may introduce extra noise, leading to interference with the model’s judgment of the long-distance dependencies between events. To address these issues, we propose GDLLM, a Global Distance-aware modeling approach based on LLMs. We first present a distance-aware graph structure utilizing Graph Attention Network(GAT) to assist the LLMs in capturing long-distance dependency features. Additionally, we design a temporal feature learning paradigm based on soft inference to augment the identification of relations with a short-distance proximity band, which supplements the probabilistic information generated by LLMs into the multi-head attention mechanism. Since the global feature can be captured effectively, our framework substantially enhances the performance of minority relation classes and improves the overall learning ability. Experiments on two publicly available datasets, TB-Dense and MATRES, demonstrate that our approach achieves state-of-the-art (SOTA) performance.
Document-level event argument extraction (EAE) is a critical task in natural language processing. While most prior approaches rely on supervised training with large labeled datasets or resource-intensive fine-tuning, recent studies explore in-context learning (ICL) with LLMs to reduce data dependence and training costs. However, the performance of ICL-based methods still lags behind fully supervised models.We highlight a key reason for this shortfall: the lack of sufficient extraction rules. In this paper, we conduct a systematic study of using hierarchical rules to enhance LLMs’ ICL capabilities. We first define three types of hierarchical rules and demonstrate their effectiveness in enhancing the performance of LLMs for document-level EAE. Building on this, we further propose an LLM-driven HiErarchical Rule Optimization (HERO) framework that iteratively generates and selects optimal hierarchical rules. Specifically, in each iteration, high-value instances are selected to produce error feedback, which is used to update and expand hierarchical rule sets. This results in multiple candidate hierarchical rule sets, from which the optimal one is selected using a scoring-based mechanism. During inference, prompts are constructed using the optimal hierarchical rules to enhance ICL performance of LLMs. Extensive experiments demonstrate the effectiveness of HERO, surpassing few-shot supervised methods and outperforming state-of-the-art prompting baselines by 3.18% F1 on RAMS, 4.30% F1 on DocEE-N, and 3.17% F1 on DocEE-C.
“Biomedical Event Causal Relation Extraction (BECRE) is an important task in biomedical infor-mation extraction. Existing methods usually use pre-trained language models to learn semanticrepresentations and then predict the event causal relation. However, these methods struggle tocapture sufficient cues in biomedical texts for predicting causal relations. In this paper, we pro-pose a Path Reasoning-based Relation-aware Network (PRRN) to explore deeper cues for causalrelations using reinforcement learning. Specifically, our model reasons the relation paths betweenentity arguments of two events, namely entity relation path, which connects the two biomedicalevents through the multi-hop interactions between entities to provide richer cues for predictingevent causal relations. In PRRN, we design a path reasoning module based on reinforcementlearning and propose a novel reward function to encourage the model to focus on the length andcontextual relevance of entity relation paths. The experimental results on two datasets suggestthat PRRN brings considerable improvements over the state-of-the-art models.Introduction”
“Biomedical event representation can be applied to various language tasks. A biomedical eventoften involves multiple biomedical entities and trigger words, and the event structure is complex.However, existing research on event representation mainly focuses on the general domain. Ifmodels from the general domain are directly transferred to biomedical event representation, theresults may not be satisfactory. We argue that biomedical events can be divided into three hierar-chies, each containing unique feature information. Therefore, we propose the Triple-views EventHierarchy Model (TEHM) to enhance the quality of biomedical event representation. TEHM ex-tracts feature information from three different views and integrates them. Specifically, due to thecomplexity of biomedical events, We propose the Trigger-aware Aggregator module to handlecomplex units within biomedical events. Additionally, we annotate two similarity task datasetsin the biomedical domain using annotation standards from the general domain. Extensive exper-iments demonstrate that TEHM achieves state-of-the-art performance on biomedical similaritytasks and biomedical event casual relation extraction.Introduction”
Understanding and analyzing event temporal relations is a crucial task in Natural Language Processing (NLP). This task, known as Event Temporal Relation Extraction (ETRE), aims to identify and extract temporal connections between events in text. Recent studies focus on locating the relative position of event pairs on the timeline by designing logical expressions or auxiliary tasks to predict their temporal occurrence. Despite these advances, this modeling approach neglects the multidimensional information in temporal relation and the hierarchical process of reasoning. In this study, we propose a novel hierarchical modeling approach for this task by introducing a Temporal Cognitive Tree (TCT) that mimics human logical reasoning. Additionally, we also design a integrated model incorporating prompt optimization and deductive reasoning to exploit multidimensional supervised information. Extensive experiments on TB-Dense and MATRES datasets demonstrate that our approach outperforms existing methods.
Event representation learning plays a crucial role in numerous natural language processing (NLP) tasks, as it facilitates the extraction of semantic features associated with events. Current methods of learning event representation based on contrastive learning processes positive examples with single-grain random masked language model (MLM), but fall short in learn information inside events from multiple aspects. In this paper, we introduce multi-grained contrastive learning and triple-mixture of experts (MCTM) for event representation learning. Our proposed method extends the random MLM by incorporating a specialized MLM designed to capture different grammatical structures within events, which allows the model to learn token-level knowledge from multiple perspectives. Furthermore, we have observed that mask tokens with different granularities affect the model differently, therefore, we incorporate mixture of experts (MoE) to learn importance weights associated with different granularities. Our experiments demonstrate that MCTM outperforms other baselines in tasks such as hard similarity and transitive sentence similarity, highlighting the superiority of our method.
Few-shot Event Detection (FSED) is a meaningful task due to the limited labeled data and expensive manual labeling. Some prompt-based methods are used in FSED. However, these methods require large GPU memory due to the increased length of input tokens caused by concatenating prompts, as well as additional human effort for designing verbalizers. Moreover, they ignore instance and prompt biases arising from the confounding effects between prompts and texts. In this paper, we propose a prototype-based prompt-instance Interaction with causal Intervention (2xInter) model to conveniently utilize both prompts and verbalizers and effectively eliminate all biases. Specifically, 2xInter first presents a Prototype-based Prompt-Instance Interaction (PPII) module that applies an interactive approach for texts and prompts to reduce memory and regards class prototypes as verbalizers to avoid design costs. Next, 2xInter constructs a Structural Causal Model (SCM) to explain instance and prompt biases and designs a Double-View Causal Intervention (DVCI) module to eliminate these biases. Due to limited supervised information, DVCI devises a generation-based prompt adjustment for instance intervention and a Siamese network-based instance contrasting for prompt intervention. Finally, the experimental results show that 2xInter achieves state-of-the-art performance on RAMS and ACE datasets.
Document-level biomedical relation extraction (Bio-DocuRE) is an important branch of biomedical text mining that aims to automatically extract all relation facts from the biomedical text. Since there are a considerable number of relations in biomedical documents that need to be judged by other existing relations, logical reasoning has become a research hotspot in the past two years. However, current models with reasoning are single-granularity only based on one element information, ignoring the complementary fact of different granularity reasoning information. In addition, obtaining rich document information is a prerequisite for logical reasoning, but most of the previous models cannot sufficiently utilize document information, which limits the reasoning ability of the model. In this paper, we propose a novel Bio-DocuRE model called FILR, based on Multi-Dimensional Fusion Information and Multi-Granularity Logical Reasoning. Specifically, FILR presents a multi-dimensional information fusion module MDIF to extract sufficient global document information. Then FILR proposes a multi-granularity reasoning module MGLR to obtain rich inference information through the reasoning of both entity-pairs and mention-pairs. We evaluate our FILR model on two widely used biomedical corpora CDR and GDA. Experimental results show that FILR achieves state-of-the-art performance.
Aspect-level sentiment analysis aims to identify the sentiment of a specific target in its context. Previous works have proved that the interactions between aspects and the contexts are important. On this basis, we also propose a succinct hierarchical attention based mechanism to fuse the information of targets and the contextual words. In addition, most existing methods ignore the position information of the aspect when encoding the sentence. In this paper, we argue that the position-aware representations are beneficial to this task. Therefore, we propose a hierarchical attention based position-aware network (HAPN), which introduces position embeddings to learn the position-aware representations of sentences and further generate the target-specific representations of contextual words. The experimental results on SemEval 2014 dataset show that our approach outperforms the state-of-the-art methods.