Lisa Haverty


Fixing paper assignments

  1. Please select all papers that belong to the same person.
  2. Indicate below which author they should be assigned to.
Provide a valid ORCID iD here. This will be used to match future papers to this author.
Provide the name of the school or the university where the author has received or will receive their highest degree (e.g., Ph.D. institution for researchers, or current affiliation for students). This will be used to form the new author page ID, if needed.

TODO: "submit" and "cancel" buttons here


2022

pdf bib
Iterative Stratified Testing and Measurement for Automated Model Updates
Elizabeth Dekeyser | Nicholas Comment | Shermin Pei | Rajat Kumar | Shruti Rai | Fengtao Wu | Lisa Haverty | Kanna Shimizu
Proceedings of the 2022 Conference on Empirical Methods in Natural Language Processing: Industry Track

Automating updates to machine learning systems is an important but understudied challenge in AutoML. The high model variance of many cutting-edge deep learning architectures means that retraining a model provides no guarantee of accurate inference on all sample types. To address this concern, we present Automated Data-Shape Stratified Model Updates (ADSMU), a novel framework that relies on iterative model building coupled with data-shape stratified model testing and improvement. Using ADSMU, we observed a 26% (relative) improvement in accuracy for new model use cases on a large-scale NLU system, compared to a naive (manually) retrained baseline and current cutting-edge methods.