Linyu Wei


Fixing paper assignments

  1. Please select all papers that belong to the same person.
  2. Indicate below which author they should be assigned to.
Provide a valid ORCID iD here. This will be used to match future papers to this author.
Provide the name of the school or the university where the author has received or will receive their highest degree (e.g., Ph.D. institution for researchers, or current affiliation for students). This will be used to form the new author page ID, if needed.

TODO: "submit" and "cancel" buttons here


2018

pdf bib
The Sogou-TIIC Speech Translation System for IWSLT 2018
Yuguang Wang | Liangliang Shi | Linyu Wei | Weifeng Zhu | Jinkun Chen | Zhichao Wang | Shixue Wen | Wei Chen | Yanfeng Wang | Jia Jia
Proceedings of the 15th International Conference on Spoken Language Translation

This paper describes our speech translation system for the IWSLT 2018 Speech Translation of lectures and TED talks from English to German task. The pipeline approach is employed in our work, which mainly includes the Automatic Speech Recognition (ASR) system, a post-processing module, and the Neural Machine Translation (NMT) system. Our ASR system is an ensemble system of Deep-CNN, BLSTM, TDNN, N-gram Language model with lattice rescoring. We report average results on tst2013, tst2014, tst2015. Our best combination system has an average WER of 6.73. The machine translation system is based on Google’s Transformer architecture. We achieved an improvement of 3.6 BLEU over baseline system by applying several techniques, such as cleaning parallel corpus, fine tuning of single model, ensemble models and re-scoring with additional features. Our final average result on speech translation is 31.02 BLEU.