Lindong Wu


Fixing paper assignments

  1. Please select all papers that belong to the same person.
  2. Indicate below which author they should be assigned to.
Provide a valid ORCID iD here. This will be used to match future papers to this author.
Provide the name of the school or the university where the author has received or will receive their highest degree (e.g., Ph.D. institution for researchers, or current affiliation for students). This will be used to form the new author page ID, if needed.

TODO: "submit" and "cancel" buttons here


2024

pdf bib
SafetyBench: Evaluating the Safety of Large Language Models
Zhexin Zhang | Leqi Lei | Lindong Wu | Rui Sun | Yongkang Huang | Chong Long | Xiao Liu | Xuanyu Lei | Jie Tang | Minlie Huang
Proceedings of the 62nd Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)

With the rapid development of Large Language Models (LLMs), increasing attention has been paid to their safety concerns. Consequently, evaluating the safety of LLMs has become an essential task for facilitating the broad applications of LLMs. Nevertheless, the absence of comprehensive safety evaluation benchmarks poses a significant impediment to effectively assess and enhance the safety of LLMs. In this work, we present SafetyBench, a comprehensive benchmark for evaluating the safety of LLMs, which comprises 11,435 diverse multiple choice questions spanning across 7 distinct categories of safety concerns. Notably, SafetyBench also incorporates both Chinese and English data, facilitating the evaluation in both languages. Our extensive tests over 25 popular Chinese and English LLMs in both zero-shot and few-shot settings reveal a substantial performance advantage for GPT-4 over its counterparts, and there is still significant room for improving the safety of current LLMs. We also demonstrate that the measured safety understanding abilities in SafetyBench are correlated with safety generation abilities. Data and evaluation guidelines are available at https://github.com/thu-coai/SafetyBench. Submission entrance and leaderboard are available at https://llmbench.ai/safety.