Linda Xue


Fixing paper assignments

  1. Please select all papers that belong to the same person.
  2. Indicate below which author they should be assigned to.
Provide a valid ORCID iD here. This will be used to match future papers to this author.
Provide the name of the school or the university where the author has received or will receive their highest degree (e.g., Ph.D. institution for researchers, or current affiliation for students). This will be used to form the new author page ID, if needed.

TODO: "submit" and "cancel" buttons here


2025

pdf bib
Towards an Automated Framework to Audit Youth Safety on TikTok
Linda Xue | Francesco Corso | Nicolo Fontana | Geng Liu | Stefano Ceri | Francesco Pierri
Proceedings of the Fourth Workshop on Bridging Human-Computer Interaction and Natural Language Processing (HCI+NLP)

This paper investigates the effectiveness of TikTok’s enforcement mechanisms for limiting the exposure of harmful content to youth accounts. We collect over 7000 videos, classify them as harmful vs not-harmful, and then simulate interactions using age-specific sockpuppet accounts through both passive and active engagement strategies. We also evaluate the performance of large language (LLMs) and vision-language models (VLMs) in detecting harmful content, identifying key challenges in precision and scalability. Preliminary results show minimal differences in content exposure between adult and youth accounts, raising concerns about the platform’s age-based moderation. These findings suggest that the platform needs to strengthen youth safety measures and improve transparency in content moderation.