This is an internal, incomplete preview of a proposed change to the ACL Anthology.
For efficiency reasons, we don't generate MODS or Endnote formats, and the preview may be incomplete in other ways, or contain mistakes.
Do not treat this content as an official publication.
LinYang
Fixing paper assignments
Please select all papers that belong to the same person.
Indicate below which author they should be assigned to.
With the booming of Large Language Models (LLMs), prompt-learning has become a promising method mainly researched in various research areas. Recently, many attempts based on prompt-learning have been made to improve the performance of text classification. However, most of these methods are based on heuristic Chain-of-Thought (CoT), and tend to be more complex but less efficient. In this paper, we rethink the LLM-based text classification methodology, propose a simple and effective transfer learning strategy, namely LLMEmbed, to address this classical but challenging task. To illustrate, we first study how to properly extract and fuse the text embeddings via various lightweight LLMs at different network depths to improve their robustness and discrimination, then adapt such embeddings to train the classifier. We perform extensive experiments on publicly available datasets, and the results show that LLMEmbed achieves strong performance while enjoys low training overhead using lightweight LLM backbones compared to recent methods based on larger LLMs, *i.e.* GPT-3, and sophisticated prompt-based strategies. Our LLMEmbed achieves adequate accuracy on publicly available benchmarks without any fine-tuning while merely use 4% model parameters, 1.8% electricity consumption and 1.5% runtime compared to its counterparts. Code is available at: https://github.com/ChunLiu-cs/LLMEmbed-ACL2024.
Large-scale language models have shown the ability to adapt to a new task via conditioning on a few demonstrations (i.e., in-context learning). However, in the vision-language domain, most large-scale pre-trained vision-language (VL) models do not possess the ability to conduct in-context learning. How can we enable in-context learning for VL models? In this paper, we study an interesting hypothesis: can we transfer the in-context learning ability from the language domain to the VL domain? Specifically, we first meta-trains a language model to perform in-context learning on NLP tasks (as in MetaICL); then we transfer this model to perform VL tasks by attaching a visual encoder. Our experiments suggest that indeed in-context learning ability can be transferred cross modalities: our model considerably improves the in-context learning capability on VL tasks and can even compensate for the size of the model significantly. On VQA, OK-VQA, and GQA, our method could outperform the baseline model while having ~20 times fewer parameters.
We propose a method named Super Characters for sentiment classification. This method converts the sentiment classification problem into image classification problem by projecting texts into images and then applying CNN models for classification. Text features are extracted automatically from the generated Super Characters images, hence there is no need of any explicit step of embedding the words or characters into numerical vector representations. Experimental results on large social media corpus show that the Super Characters method consistently outperforms other methods for sentiment classification and topic classification tasks on ten large social media datasets of millions of contents in four different languages, including Chinese, Japanese, Korean and English.
Machine translation (MT) draws from several different disciplines, making it a complex subject to teach. There are excellent pedagogical texts, but problems in MT and current algorithms for solving them are best learned by doing. As a centerpiece of our MT course, we devised a series of open-ended challenges for students in which the goal was to improve performance on carefully constrained instances of four key MT tasks: alignment, decoding, evaluation, and reranking. Students brought a diverse set of techniques to the problems, including some novel solutions which performed remarkably well. A surprising and exciting outcome was that student solutions or their combinations fared competitively on some tasks, demonstrating that even newcomers to the field can help improve the state-of-the-art on hard NLP problems while simultaneously learning a great deal. The problems, baseline code, and results are freely available.