Lin-Han Jia


Fixing paper assignments

  1. Please select all papers that belong to the same person.
  2. Indicate below which author they should be assigned to.
Provide a valid ORCID iD here. This will be used to match future papers to this author.
Provide the name of the school or the university where the author has received or will receive their highest degree (e.g., Ph.D. institution for researchers, or current affiliation for students). This will be used to form the new author page ID, if needed.

TODO: "submit" and "cancel" buttons here


2025

pdf bib
VCSearch: Bridging the Gap Between Well-Defined and Ill-Defined Problems in Mathematical Reasoning
Shi-Yu Tian | Zhi Zhou | Kun-Yang Yu | Ming Yang | Lin-Han Jia | Lan-Zhe Guo | Yu-Feng Li
Proceedings of the 2025 Conference on Empirical Methods in Natural Language Processing

Large language models (LLMs) have demonstrated impressive performance on reasoning tasks, including mathematical reasoning. However, the current evaluation mostly focuses on carefully constructed benchmarks and neglects the consideration of real-world reasoning problems that present missing or contradictory conditions, known as ill-defined problems. To further study this problem, we develop a large-scale benchmark called Problems with Missing and Contradictory conditions (PMC) containing over 5,000 validated ill-defined mathematical problems. Our preliminary experiments through PMC reveal two challenges about existing methods: (1) traditional methods exhibit a trade-off between solving accuracy and rejection capabilities, and (2) formal methods struggle with modeling complex problems. To address these challenges, We develop Variable-Constraint Search (VCSearch), a training-free framework that leverages formal language to detect ill-defined problems, where a variable-constraint pair search strategy is incorporated to improve the modeling capability of formal language. Extensive experiments demonstrate that VCSearch improves the accuracy of identifying unsolvable problems by at least 12% across different LLMs, thus achieving stronger robust mathematical reasoning ability.