This is an internal, incomplete preview of a proposed change to the ACL Anthology.
For efficiency reasons, we don't generate MODS or Endnote formats, and the preview may be incomplete in other ways, or contain mistakes.
Do not treat this content as an official publication.
LinChen
Also published as:
霖 陈
Fixing paper assignments
Please select all papers that do not belong to this person.
Indicate below which author they should be assigned to.
The ability of large language models (LLMs) to utilize external tools has enabled them to tackle an increasingly diverse range of tasks. However, as the tasks become more complex and long-horizon, the intricate tool utilization process may trigger various unexpected errors. Therefore, how to effectively handle such errors, including identifying, diagnosing, and recovering from them, has emerged as a key research direction for advancing tool learning. In this work, we first extensively analyze the types of errors encountered during the function-calling process on several competitive tool evaluation benchmarks. Based on it, we introduce CRITICTOOL, a comprehensive critique evaluation benchmark specialized for tool learning. Building upon a novel evolutionary strategy for dataset construction, CRITICTOOL holds diverse tool-use errors with varying complexities, which better reflects real-world scenarios. We conduct extensive experiments on CRITICTOOL, and validate the generalization and effectiveness of our constructed benchmark strategy. We also provide an in-depth analysis of the tool reflection ability on various LLMs, offering a new perspective on the field of tool learning in LLMs. The code is available at https://github.com/Shellorley0513/CriticTool.
High-quality image captions are essential for improving modality alignment and visual understanding in Large Vision-Language Models (LVLMs). However, the scarcity of ultra-detailed image caption data limits further advancements. This paper presents a systematic pipeline for generating high-quality, ultra-detailed image captions, encompassing both pre-processing and post-processing stages. In the pre-processing stage, we classify and deduplicate images, extract visual information using expert tools, and leverage GPT-4o with structured prompts to generate initial captions. To enhance comprehensiveness, we introduce an expansion strategy based on Large Language Models (LLMs), defining eight descriptive dimensions to refine and extend captions, which serve as seed data for training a proprietary captioner model. In the post-processing stage, we incorporate human error-correction annotations and an active learning-inspired approach to refine low-quality samples. Using high-quality corrected data, we apply Direct Preference Optimization (DPO) and develop a critic-rewrite pipeline, training a sentence-level critic model to mitigate hallucinations. Experimental results demonstrate that our ultra-detailed captions significantly enhance LVLMs’ perception and cognitive abilities across multiple vision-language benchmarks. The code and dataset are available at https://github.com/yuzeng0-0/UltraCaption.
Recently, a variety of neural models have been proposed for lyrics generation. However, most previous work completes the generation process in a single pass with little human intervention. We believe that lyrics creation is a creative process with human intelligence centered. AI should play a role as an assistant in the lyrics creation process, where human interactions are crucial for high-quality creation. This paper demonstrates Youling, an AI-assisted lyrics creation system, designed to collaborate with music creators. In the lyrics generation process, Youling supports traditional one pass full-text generation mode as well as an interactive generation mode, which allows users to select the satisfactory sentences from generated candidates conditioned on preceding context. The system also provides a revision module which enables users to revise undesired sentences or words of lyrics repeatedly. Besides, Youling allows users to use multifaceted attributes to control the content and format of generated lyrics. The demo video of the system is available at https://youtu.be/DFeNpHk0pm4.
We study the problem of visual question answering (VQA) in images by exploiting supervised domain adaptation, where there is a large amount of labeled data in the source domain but only limited labeled data in the target domain, with the goal to train a good target model. A straightforward solution is to fine-tune a pre-trained source model by using those limited labeled target data, but it usually cannot work well due to the considerable difference between the data distributions of the source and target domains. Moreover, the availability of multiple modalities (i.e., images, questions and answers) in VQA poses further challenges in modeling the transferability between various modalities. In this paper, we address the above issues by proposing a novel supervised multi-modal domain adaptation method for VQA to learn joint feature embeddings across different domains and modalities. Specifically, we align the data distributions of the source and target domains by considering those modalities both jointly and separately. Extensive experiments on the benchmark VQA 2.0 and VizWiz datasets demonstrate that our proposed method outperforms the existing state-of-the-art baselines for open-ended VQA in this challenging domain adaptation setting.