This is an internal, incomplete preview of a proposed change to the ACL Anthology.
For efficiency reasons, we don't generate MODS or Endnote formats, and the preview may be incomplete in other ways, or contain mistakes.
Do not treat this content as an official publication.
LinAi
Fixing paper assignments
Please select all papers that belong to the same person.
Indicate below which author they should be assigned to.
The rapid expansion of online content has intensified the issue of information redundancy, underscoring the need for solutions that can identify genuinely new information. Despite this challenge, the research community has seen a decline in focus on novelty detection, particularly with the rise of large language models (LLMs). Additionally, previous approaches have relied heavily on human annotation, which is time-consuming, costly, and particularly challenging when annotators must compare a target document against a vast number of historical documents. In this work, we introduce NovAScore (Novelty Evaluation in Atomicity Score), an automated metric for evaluating document-level novelty. NovAScore aggregates the novelty and salience scores of atomic information, providing high interpretability and a detailed analysis of a document’s novelty. With its dynamic weight adjustment scheme, NovAScore offers enhanced flexibility and an additional dimension to assess both the novelty level and the importance of information within a document. Our experiments show that NovAScore strongly correlates with human judgments of novelty, achieving a 0.626 Point-Biserial correlation on the TAP-DLND 1.0 dataset and a 0.920 Pearson correlation on an internal human-annotated dataset.
Propaganda plays a critical role in shaping public opinion and fueling disinformation. While existing research primarily focuses on identifying propaganda techniques, it lacks the ability to capture the broader motives and the impacts of such content. To address these challenges, we introduce PropaInsight, a conceptual framework grounded in foundational social science research, which systematically dissects propaganda into techniques, arousal appeals, and underlying intent. PropaInsight offers a more granular understanding of how propaganda operates across different contexts. Additionally, we present PropaGaze, a novel dataset that combines human-annotated data with high-quality synthetic data generated through a meticulously designed pipeline. Our experiments show that off-the-shelf LLMs struggle with propaganda analysis, but PropaGaze significantly improves performance. Fine-tuned Llama-7B-Chat achieves 203.4% higher text span IoU in technique identification and 66.2% higher BertScore in appeal analysis compared to 1-shot GPT-4-Turbo. Moreover, PropaGaze complements limited human-annotated data in data-sparse and cross-domain scenarios, demonstrating its potential for comprehensive and generalizable propaganda analysis.
In this paper, we introduce the Akan Cinematic Emotions (AkaCE) dataset, the first multimodal emotion dialogue dataset for an African language, addressing the significant lack of resources for low-resource languages in emotion recognition research. AkaCE, developed for the Akan language, contains 385 emotion-labeled dialogues and 6162 utterances across audio, visual, and textual modalities, along with word-level prosodic prominence annotations. The presence of prosodic labels in this dataset also makes it the first prosodically annotated African language dataset. We demonstrate the quality and utility of AkaCE through experiments using state-of-the-art emotion recognition methods, establishing solid baselines for future research. We hope AkaCE inspires further work on inclusive, linguistically and culturally diverse NLP resources.
We present SMARTMiner, a framework for extracting and evaluating specific, measurable, attainable, relevant, time-bound (SMART) goals from unstructured health coaching (HC) notes. Developed in response to challenges observed during a clinical trial, the SMARTMiner achieves two tasks: (i) extracting behavior change goal spans and (ii) categorizing their SMARTness. We also introduce SMARTSpan, the first publicly available dataset of 173 HC notes annotated with 266 goals and SMART attributes. SMARTMiner incorporates an extractive goal retriever with a component-wise SMARTness classifier. Experiment results show that extractive models significantly outperformed their generative counterparts in low-resource settings, and that two-stage fine-tuning substantially boosted performance. The SMARTness classifier achieved up to 0.91 SMART F1 score, while the full SMARTMiner maintained high end-to-end accuracy. This work bridges healthcare, behavioral science, and natural language processing to support health coaches and clients with structured goal tracking - paving way for automated weekly goal reviews between human-led HC sessions. Both the code and the dataset are available at: https://github.com/IvaBojic/SMARTMiner.
Open Information Extraction (OpenIE) represents a crucial NLP task aimed at deriving structured information from unstructured text, unrestricted by relation type or domain. This survey paper provides an overview of OpenIE technologies spanning from 2007 to 2024, emphasizing a chronological perspective absent in prior surveys. It examines the evolution of task settings in OpenIE to align with the advances in recent technologies. The paper categorizes OpenIE approaches into rule-based, neural, and pre-trained large language models, discussing each within a chronological framework. Additionally, it highlights prevalent datasets and evaluation metrics currently in use. Building on this extensive review, this paper systematically reviews the evolution of task settings, data, evaluation metrics, and methodologies in the era of large language models, highlighting their mutual influence, comparing their capabilities, and examining their implications for open challenges and future research directions.